Sitemap
A list of all the posts and pages found on the site. For you robots out there is an XML version available for digesting as well.
Pages
Posts
Note on the Kadison-Singer Problem and its Solution
Posted on:
The Kadison-Singer problem arose from the work on quantum mechanics done by Paul Dirac in the 1930s. The problem is equivalent to fundamental problems in areas like Operator theory, Hilbert and Banach space theory, Frame theory, Harmonic Analysis, Discrepancy theory, Graph theory, Signal Processing and theoretical Computer Science. The Kadison-Singer problem had been long standing and defied the efforts of most Mathematicians until it was recently solved by Adam Wade Marcus, Daniel Alan Spielman and Nikhil Srivastava in 2013. Read more
A note on Conformal Symplectic and Relativistic Optimization
Posted on:
This note on a spotlight paper at NeurIPS 2020, has been made while I had been reading the literature on the principle connections between continuous and discrete optimization. The motivation is to understand and create accelerated discrete large scale optimization algorithms from first principles via considering the geometry of phase spaces and numerical integration, specifically symplectic integration. Recent works successfully have been able to throw sufficient light on the two and therefore has attracted my attention. Read more
Geometry of Relativistic Spacetime Physics
Posted on:
This article introduces and describes the mathematical structures and frameworks needed to understand the modern fundamental theory of Relativistic Spacetime Physics. The self-referential and self-contained nature of Mathematics provides enough power to prescribe a rigorous language needed to formulate the building components of the standard Einstein’s General Theory of Relativity like Spacetime, Matter, and Gravity, along with their behaviors and interactions. In these notes, we will introduce and understand these abstract components, starting with defining the arena of smooth manifolds and then adding the necessary and suffcient differential geometric structures needed to build the primers to the General Theory of Relativity. Read more
Dual spaces and the Fenchel conjugate
Posted on:
Dual spaces lie at the core of linear algebra and allows us to formally reason about the concept of duality in mathematics. Duality shows up naturally and elegantly in measure theory, functional analysis, and mathematical optimization. In this post, I have tried to learn and explore the nature of duality via Dual spaces, its interpretation in general linear algebra, all of which was motivated by the so called convex conjugate, or the Fenchel conjugate in mathematical optimization. Read more
A survey on Strongly Rayleigh measures and their mixing time analysis
Posted on:
Strongly Rayleigh measures are natural generalizations of measures that satisfy the notion of negative dependence. The class of Strongly Rayleigh measures provides the most useful characterization of Negative Dependence by grounding it in the theory of multivariate stable polynomials. This post attempts to throw some light on the origin of Strongly Rayleigh measures and Determinantal Point Processes and highlights the fast mixing time analysis of the natural MCMC chain in the support of a Strongly Rayleigh measure as shown by Anari, Gharan and Rezaei 2016. Read more
Analysis of Newton’s Method
Posted on:
In optimization, Netwon’s method is used to find the roots of the derivative of a twice differentiable function given the oracle access to its gradient and hessian. By having super-liner memory in the dimension of the ambient space, Newton’s method can take the advantage of the second order curvature and optimize the objective function at a quadratically convergent rate. Here I consider the case when the objective function is smooth and strongly convex. Read more
Deriving the Fokker-Planck equation
Posted on:
In the theory of dynamic systems, Fokker-Planck equation is used to describe the time evolution of the probability density function. It is a partial differential equation that describes how the density of a stochastic process changes as a function of time under the influence of a potential field. Some common application of it are in the study of Brownian motion, Ornstein–Uhlenbeck process, and in statistical physics. The motivation behind understanding the derivation is to study Levy flight processes that has caught my recent attention. Read more
SGD without replacement
Posted on:
This article is in continuation of my previous blog, and discusses about the work by Prateek Jain, Dheeraj Nagaraj and Praneeth Netrapalli 2019. The authors provide tight rates for SGD without replacement for general smooth, and general smooth and strongly convex functions using the method of exchangeable pairs to bound Wasserstein distances, and techniques from optimal transport. Read more
Non-asymptotic rate for Random Shuffling for Quadratic functions
Posted on:
This article is in continuation of my previous blog, and discusses about a section of the work by Jeffery Z. HaoChen and Suvrit Sra 2018, in which the authors come up with a non-asymptotic rate of \(\mathcal{O}\left(\frac{1}{T^2} + \frac{n^3}{T^3} \right)\) for Random Shuffling Stochastic algorithm which is strictly better than that of SGD. Read more
Bias-Variance Trade-offs for Averaged SGD in Least Mean Squares
Posted on:
This article is on the work by Défossez and Bach 2014, in which the authors develop an operator view point for analyzing Averaged SGD updates to show the Bias-Variance Trade-off and provide tight convergence rates of Least Mean Squared problem. Read more
Random Reshuffling converges to a smaller neighborhood than SGD
Posted on:
This article is on the recent work by Ying et. al. 2018, in which the authors show that SGD with Random Reshuffling outperforms independent sampling with replacement. Read more
Nesterov’s Acceleration
Posted on:
This post contains an error vector analysis of the Nesterov’s accelerated gradient descent method and some insightful implications that can be derived from it. Read more
Some resources to start with Fundamentals of Machine Learning
Posted on:
With a number of courses, books and reading material out there here is a list of some which I personally find useful for building a fundamental understanding in Machine Learning. Read more
A survey on Large Scale Optimization
Posted on:
This post contains a summary and survey of the theoretical understandings of Large Scale Optimization by referring some talks, papers, and lectures that I have come across in the recent. Read more
misc
Montreal, Canada during NeurIPS 2018
Posted on:
Visited Montreal, Canada with Microsoft Research Labmates to attend and present at NeurIPS 2018 Read more
Melbourne, Australia during WSDM 2019
Posted on:
Visited Melbourne, Australia to attend and present at WSDM 2019 Read more
Vancouver, Canada during NeurIPS 2019
Posted on:
Visited Vancouver, Canada to attend NeurIPS 2019 and present at SEDL 2019 Read more
projects
Some Approaches of Building Recommendation Systems
Posted on:
The project aims at using different recommendation methods for different kinds of real world data like rating matrices, images and text, using Deep Learning and Optimization. Read more
Sparse Regression and Support Recovery bounds for Orthogonal Matching Pursuit
Posted on:
We study the problem of sparse regression where the goal is to learn a sparse vector that best optimizes a given objective function. Under the assumption that the objective function satisfies restricted strong convexity (RSC), we analyze Orthogonal Matching Pursuit (OMP) and obtain support recovery result as well as a tight generalization error bound for OMP. Furthermore, we obtain lower bounds for OMP, showing that both our results on support recovery and generalization error are tight up to logarithmic factors. To the best of our knowledge, these support recovery and generalization bounds are the first such matching upper and lower bounds (up to logarithmic factors) for any sparse regression algorithm under the RSC assumption. Read more
Universality Patterns in the Training of Neural Networks
Posted on:
This work proposes and demonstrates a surprising pattern in the training of neural networks: there is a one to one relation between the values of any pair of losses (such as cross entropy, mean squared error, \(0/1\) error etc.) evaluated for a model arising at (any point of) a training run. This pattern is universal in the sense that this one to one relationship is identical across architectures (such as VGG, Resnet, Densenet etc.), algorithms (SGD and SGD with momentum) and training loss functions (cross entropy and mean squared error). Read more
Connections between Stochasticity of SGD and Generalizability
Posted on:
This is an attempt to understand how stochasticity in an optimization algorithm affect generalization properties of a Neural Network. Read more
Robust Mixed Linear Regression using heterogeneous batches
Posted on:
For the problem of learning Mixed Linear Regression, this work introduces a spectral approach that is simultaneously robust under both data scarcity and outlier tasks. Read more
Scaling laws of optimization algorithms for Deep Learning - the Graphon perspective
Posted on:
The non-linear training dynamics of two-layer NNs can be modeled as a mean-field interacting particle system, where neurons in the hidden layer act as “particles.” These dynamics often lead to Wasserstein gradient flows, treating the problem as an optimization over probability measures due to the permutation symmetry of neurons. Extending this to multi-layer NNs, which exhibit more complex symmetries as large computational graphs, this work describes the analytical scaling limits of stochastic optimization algorithms as network size grows. By leveraging the theory of exchangeable arrays, graphons, gradient flows on metric spaces, and propagation of chaos, we characterize this scaling limit. We discover a generalized McKean-Vlasov equation on graphons, where propagation of chaos holds, and in the zero-noise limit, this scaling limit becomes a gradient flow on the metric space of graphons. Read more
Scaling Limits of Algorithms on Large Matrices
Posted on:
This work has been accepted as my Ph.D. thesis at the University of Washington. Please find the full text of the thesis here. Read more
publications
Clustered Monotone Transforms for Rating Factorization
Raghav Somani*, Gaurush Hiranandani*, Sanmi Koyejo & Sreangsu AcharyyaThe paper has been accepted for an oral persentation (84/511 submissions ≈ 16% Acceptance Rate). Read more
Support Recovery for Orthogonal Matching Pursuit: Upper and Lower bounds
Raghav Somani*, Chirag Gupta*, Prateek Jain & Praneeth NetrapalliThe paper has been accepted for Spotlight presentation. Read more
Non-Gaussianity of Stochastic Gradient Noise
Abhishek Panigrahi, Raghav Somani, Navin Goyal & Praneeth NetrapalliWe study the distribution of the Stochastic Gradient Noise during the training and observe that for batch sizes \(256\) and above, the distribution is best described as Gaussian at-least in the early phases of training. Read more
Meta-learning for Mixed Linear Regression
Weihao Kong, Raghav Somani, Zhao Song, Sham Kakade, Sewoong OhThe paper has been accepted for a presentation. Read more
Robust Meta-learning for Mixed Linear Regression with Small Batches
Weihao Kong, Raghav Somani, Sham Kakade, Sewoong OhThe paper has been accepted for a poster. Read more
Gradient Flows on Graphons: Existence, Convergence, Continuity Equations
Sewoong Oh, Soumik Pal, Raghav Somani & Raghav TripathiThe paper is published at the Journal of Theoretical Probability. Read more