Upper bound on Generalization Error

Theorem (T. Zhang [3]): If $O(n) > 1$, OMP output after $s = O(s_r) \log(n)$ iterations, then $n \leq k$.

We adopt the ad-hoc to improve the upper bound.

Generalization error upper bound

Theorem:

After $s = O(s_r) \log(n)$ iterations, with high probability, for any $x \in S$

\[
\|\bar{x}_n - x\|_2 \leq \left(\frac{M}{s_r} + \frac{1}{s}\right) \sqrt{\frac{s_r \log(n)}{n}}
\]

Remarks:

- The assumption $n \geq k$ is too strong in most cases.
- The parameter s_r is order of the design matrix and the sub-
- The only limits for recovery results is for LASSO under BCS, that probable similar result [3]

Results for Gaussian ensemble

- When norm of A is bounded, $s = O(k)$ holds.

- Generalization error $\|\bar{x}_n - x\|_2 \leq \sqrt{\frac{M}{s_r} \log(n)}$

- Support recovery: $\|\bar{x}_n - x\|_1 \leq \frac{1}{s} \sqrt{\frac{M}{s_r} \log(n)}$

Support Recovery upper bound

Theorem:

After $s = O(s_r) \log(n)$ iterations, with high probability, for any $x \in S$

\[
\|\bar{x}_n - x\|_1 \leq \frac{1}{s} \sqrt{\frac{M}{s_r} \log(n)}
\]

Large in objective

Theorem:

After $s = O(s_r) \log(n)$ iterations, with high probability, for any $x \in S$

\[
\|\bar{x}_n - x\|_2 \leq \left(\frac{M}{s_r} + \frac{1}{s}\right) \sqrt{\frac{s_r \log(n)}{n}}
\]

Remarks:

- The objective function can be further bounded via distortion can be too large.

Lower bound results

Theorem:

- When norm of A is bounded, $s = O(k)$ holds.

- Generalization error $\|\bar{x}_n - x\|_2 \leq \sqrt{\frac{M}{s_r} \log(n)}$

- Support recovery: $\|\bar{x}_n - x\|_1 \leq \frac{1}{s} \sqrt{\frac{M}{s_r} \log(n)}$

References

Acknowledgments

The research was supported by NSF CCF-1212798.