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Abstract

We study Sparse Linear Regression (SLR) under the Restricted Strong Convexity (RSC)
assumption for Orthogonal Matching Pursuit (OMP).
Main Results:
• Improved bound for Support Recovery
• Improved Generalization Error bound
•Matching (up to log factors) lower bound for Generalization Error

Introduction

•Sparse Linear Regression (SLR):
x̄ = arg min

‖x‖0≤s∗
‖Ax− y‖2

2 A ∈ Rn×d,y ∈ Rn.

•Applications: Resource Constrained ML, High-dimensional Statistics, Image De-noising, etc.
•NP hard in general [1]. We study it under RSC:

ρ−s ‖x− z‖2
2 ≤ ‖Ax−Az‖2

2 ≤ ρ+
s ‖x− z‖2

2 ∀ x, z ∈ Rd s.t. ‖x− z‖0 ≤ s

• ρ+
s : Restricted Smoothness (RSS) constant • ρ−s : Restricted Convexity (RSC) constant

•Key quantity: Restricted Condition Number – κ̃s = ρ+
1
ρ−s

•Assumption: Generative model. supp(x̄) = S∗, |S∗| = s∗.
y = Ax̄ + η = AS∗x̄S∗ + η where η ∼ N

(
0, σ2In×n

)
.

Goals of SLR

1 Bound Generalization Error: G(x) := 1
n ‖A(x̄− x)‖2

2.
2 Support Recovery - Recover a small support set S s.t. S ⊇ S∗.

Existing SLR algorithms

• `1 minimization based (LASSO based) algorithms, for example: Dantzig selector.
•Non-convex penalty based,

• SCAD/MCP penalty based • Iterative Hard Thresholding (IHT)

•Greedy and Pursuit methods,

•Hard Thresholding Pursuit (HTP)
•Orthogonal Matching Pursuit (OMP)

•Partial Hard Thresholding (PHT)

Orthogonal Matching Pursuit

OMP – greedy algorithm. Estimates support of x̄ by adding one feature at a time.
Start with empty set: S0 = φ, x0 = 0, r0 = y.
For iterations k = 1 to s
•Select next index greedily: j ← arg max

i 6∈Sk−1

|AT
i rk−1|,

• Incrementally grow support: Sk ← Sk−1 ∪ {j},
•Optimize on current support: xk ← arg min

supp(x)⊆Sk
‖Ax− y‖2

2,

•Update residual: rk ← y−Axk,
Return xs.
The size of the support of OMP = number of iterations.

Upper bound on Generalization Error

• (T. Zhang’10 [2]) If x̂s is OMP’s output after s & s∗κ̃s+s∗ log κs+s∗ iterations, then w.h.p.,
1
n
‖A(x̂s − x̄)‖2

2 .
1
n
σ2s∗κ̃2

s+s∗ log κs+s∗

•We adapt the analysis to improve the upper bound

Generalization error upper bound

After s & s∗κ̃s+s∗ log κs+s∗ iterations, w.h.p.,
1
n
‖A(x̂s − x̄)‖2

2 .
1
n
σ2s∗κ̃s+s∗ log κs+s∗

Support Recovery upper bound

• If any support is unrecovered, there is a large additive decrease in the function value.

Large decrease in objective

After s & s∗κ̃s+s∗ log κs+s∗ iterations if S∗ \ supp(x̂s) 6= φ, and |x̄min| & γ
σ
√
ρ+

1
ρ−s+s∗

, then w.h.p.,

‖Ax̂s − y‖2
2 − ‖Ax̂s+1 − y‖2

2 & σ2

where
∥∥∥∥AT

S∗\SAS
(
AT

SAS
)−1∥∥∥∥∞ ≤ γ.

•Objective function can be lower bounded ∴ extra iterations cannot be too large.

Support Recovery upper bound

If x̂s is OMP’s output then under similar conditions, w.h.p.,

S∗ ⊆ supp(x̂s) and ‖x̂s − x̄‖∞ . σ

√√√√√log s
ρ−s

.

Remarks and Comparison

•Our assumption on |x̄min| is better by at least
√
κ̃ than ones in recent works.

•The γ parameter is similar to the standard incoherence parameter. Existing results for OMP require
the incoherence parameter to be < 1. Our analysis holds for arbitrary values of γ.
•The only known support recovery result is for LASSO under RSC, that provides similar result [3].

Related Work Support expansion (s) |x̄min| lower bound

Yuan et al. [HTP] κ2
2ss
∗ σ

√
s√
ρ−2s

Shen et al. [HTP] κ2
2ss
∗ σ

√
κ2s
√
ρ+

1 s

ρ−s+s∗

Shen et al. [PHT(r)] s∗ + κ2
2s min {s∗, r} σ

√
κ2s
√
ρ+

1 s

ρ−2s

Jain et al. [IHT] κ2
2s+s∗s

∗ –

Zhang [OMP] κ̃s+s∗s
∗ log κs+s∗ –

Our’s [OMP] κ̃s+s∗s
∗ log κs+s∗ γ · σ

√
ρ+

1
ρ−s+s∗

•X. Yuan, P. Li, and T. Zhang. Exact recovery of hard thresholding pursuit, NIPS’16.
• J. Shen and P. Li. On the iteration complexity of support recovery via hard thresholding pursuit, ICML’17.
• J. Shen and P. Li. Partial hard thresholding: Towards a principled analysis of support recovery, NIPS’17.
•P. Jain, A. Tewari, and P. Kar. On iterative hard thresholding methods for high-dimensional m-estimation, NIPS’14.
•T. Zhang. Sparse recovery with orthogonal matching pursuit under RIP. IEEE Transactions on Information Theory, 2011.

Results for Gaussian ensemble

•When rows of A are sampled from N (0,Σ) s.t. Σii ≤ 1 ∀ i ∈ [d].
•Generalization error: If x̂s is OMP’s output

• after s = Θ (κ (Σ) log κ (Σ) s∗) iterations, • n = Ω
(
s log d
σmin(Σ)

)

1
n
‖A (x̂s − x̄)‖2

2 .
1
n
σ2κ (Σ) log κ (Σ) s∗ w.h.p.

•Support Recovery: For Σ = I,

• s = Ω (s∗), • |x̄min| = Ω
(
σ
√

log d
n

)
, and • n = Ω

(
(s∗)2 log d

)

S∗ ⊆ supp(x̂s), and ‖x̂s − x̄‖∞ . σ

√√√√log s
n

w.h.p.

Lower bound instance construction

•Fool OMP into picking incorrect indexes. Large support size =⇒ large generalization error.
•Construct evenly distributed x̄

x̄i =


1√
s∗

if 1 ≤ i ≤ s∗

0 if i > s∗
=⇒ supp(x̄) = {1, 2, . . . , s∗}

•M(ε)
1:s∗ are random s∗ orthogonal column vectors s.t.

∥∥∥∥M(ε)
i

∥∥∥∥2

2
= n ∀ i ∈ [s∗].

•M(ε)
i =

√
1− ε

 1√
s∗

s∗∑
j=1

M(ε)
j

 +
√
εgi ∀ i 6∈ [s∗] where gi’s are orthogonal to each other and M(ε)

1:s∗

with ‖gi‖2
2 = n.

Figure 1:Visualizing in d = 3 with s∗ = 2 and ε = 0.25.

Lower bound results

Lower bound: Noiseless case

For s∗ ≤ d ≤ n ∃ ε > 0 s.t. when OMP is executed on the SLR problem with y = M(ε)x̄ for
s ≤ d− s∗ iterations, then

κ̃s
(
M(ε)

)
.
s

s∗
, γ

(
M(ε)

)
= O (1) and S∗ ∩ supp(x̂s) = φ

Lower bound: Noise case

For s∗ ≤ s ≤ d1−α, α ∈ (0, 1), ∃ ε > 0 s.t. when OMP is executed on the SLR problem with
y = M(ε)x̄ + η where η ∼ N (0, σ2In×n), then w.h.p., κ̃s

(
M(ε)) . s

s∗, γ
(
M(ε)) = O (1),

1
n
‖A (x̂s − x̄)‖2

2 &
1
n
σ2s∗κ̃s+s∗ and S∗ ∩ supp(x̂s) = φ.

These lower bounds show that s & κ̃ss
∗ iterations are indeed necessary for support recovery.

Simulations

We perform simulations on the lower bound instance to verify our results. M(ε) ∈ R1000×100 and s∗ = 10.

Figure 2:Number of iterations required for recovering the full support of x̄ w.r.t κ̃s+s∗ of the design matrix and the sub-
Gaussian parameter of the noise term (σ2).

When noise is very high, the selection step of OMP tends to become a uniform random selector. This
is represented by the red dashed line.

Conclusion

•We obtain support recovery & generalization guarantees for OMP under RSC for SLR.
•We provide lower bounds for OMP showing that our results are tight up to logarithmic factors.
•Our results match the best known results for SLR that use non-convex penalty based methods.
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. and & are inequalities up to constants & polylog d factors.


