Scaling limits of SGD over large networks: a Graphon perspective

University of Washington

Zaid Harchaoui

Motivation

• Study large scale optimization problems over **unlabeled graphs**.

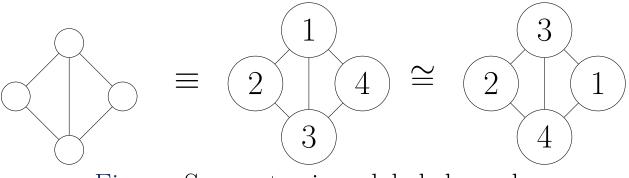


Figure: Symmetry in unlabeled graphs.

• Minimize Risk function over weights of the Neural Network (NN).

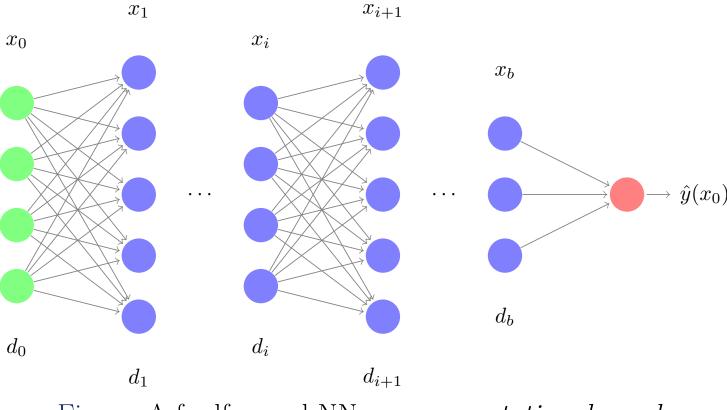


Figure: A feedforward NN as a *computational graph*.

- Do symmetries help our understanding and analysis? Unlabeled graphs, and NNs have **permutation symmetries**.
- Stochastic Gradient Descent (SGD) behave as network grows? Does noise play any role?

Objective

Understand the scaling limits of the standard first-order stochastic optimization algorithms over functions of large dense unlabeled weighted graphs, which are invariant under vertex relabeling.

For 1-hidden layer NNs (evolving neurons = interacting particle)

- System of interacting particles (neurons in a 1-hidden layer NN) have single permutation symmetry.
- Scaling limit "Mean-field limits" [4], "Wasserstein gradient flow" [1].

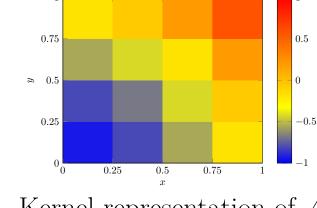
For multi-layer NNs (evolving weights = interacting weighted edges)

• We attempt to generalize the Wasserstein calculus to higher-order exchangeable structures.

Graphons $\widehat{\mathcal{W}}$

• Space of *graphons* capture this symmetry. Adjacency matrix \equiv kernel.

-16 - 15 - 12 - 7 $-15 \ -14 \ -11 \ 1$ $\frac{1}{16}$ $-12 \ -11 \ -6 \ 4$ -7 1 4 Symmetric matrix A



- Kernel representation of A
- **Kernels**, \mathcal{W} : Measurable symmetric function $W: [0,1]^{(2)} \to [-1,1]$.
- Graph isomorphism: Identify $W_1 \cong W_2$ if one can be obtained by
- 'relabeling' the vertices of the other.
- Graphons: $\widehat{\mathcal{W}} \coloneqq \mathcal{W} / \cong$.

Sewoong Oh Soumik Pal Raghav Somani Raghav Tripathi

Topology, metric & differentiable structure over graphons

- Cut Topology: Plays a similar topological role as the topology of weak convergence does on probability measures. It captures graph convergence, is *compact* and metrizable by δ_{\Box} .
- Invariant L^2 metric, δ_2 : Sometimes referred to as the "Gromov-Wasserstein" metric. Plays a similar role as the Wasserstein-2 metric does on probability measures. It is a geodesic metric [3].
- **Fréchet-like derivative** [3]: For $R: \widehat{\mathcal{W}} \to \mathbb{R}$, the Fréchet-like derivative DR(W) of R is the *first order linear approximation* of R at $W \in \mathcal{W} \subseteq L^2([0,1]^2).$

Any $n \times n$ symmetric matrix A naturally corresponds to a kernel and hence can be naturally associated with a graphon. Thus, any function $R: \mathcal{W} \to \mathbb{R}$ defines a map on bounded $n \times n$ symmetric matrices \mathcal{M}_n , denoted by R_n . Spatial scaling leads to the relation: $n^2 \nabla R_n \equiv DR$.

Scaling limit of SGD

Existence of a gradient flow on graphons [3]

Let $R: \widehat{\mathcal{W}} \to \mathbb{R}$ be δ_{\Box} -continuous, Fréchet differentiable, and geodesically semiconvex. Then staring from $W_0 \in \widehat{\mathcal{W}}$, there exists a unique gradient flow curve $(W_t)_{t>0}$ of R satisfying

$$W_t = W_0 - \int_0^t DR(W_s) \,\mathrm{d}s, \qquad t \ge 0,$$

inside \mathcal{W} . At the boundary $\{-1, 1\}$, add constraints to contain it.

• For every $n \in \mathbb{N}$, start at $W_0^{(n)} \in \mathcal{M}_n$, take steps towards the negative of the scaled Euclidean gradient $n^2 \nabla R_n$, to obtain

$$V_{k+1}^{(n)} = P\left(W_k^{(n)} - \tau_n n^2 \nabla R_n\left(W_k^{(n)}\right)\right), \qquad k \in \mathbb{Z}_+.$$
(PGD)

Convergence of Gradient Descents [3]

Let the Fréchet-like derivative be uniformly bounded, i.e., $\|DR(W)\|_{\infty} <$ $M < \infty, \forall W \in \widehat{\mathcal{W}}$. If $W_0^{(n)} \xrightarrow{\delta_{\Box}} W_0$, and $\tau_n \to 0$, then as $W^{(n)} \stackrel{\sim}{\rightrightarrows} W, \quad \text{as } n \to \infty.$ curves,

• Stochastic approximation algorithms like SGD also converges to the *same* gradient flow on graphons.

• The stochastic noise smoothens out due to the regularity of the cut topology.

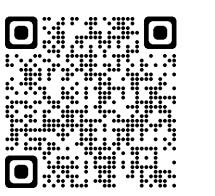
Examples of functions

• Scalar Entropy function: Let $h: p \mapsto p \log p + (1-p) \log (1-p)$, and $\epsilon > 0$. Sample $\{Z_i\}_{i=1}^2 \stackrel{\text{i.i.d.}}{\sim} \text{Uni}[0,1]$, and define

$$\mathcal{E}(W) \coloneqq \mathbb{E}[h(W(Z_1, Z_2))], \quad \text{for } \epsilon \leq W \leq 1 - \epsilon.$$

2 Homomorphism functions: Let F = (V, E) be a simple graph with k vertices. Sample $\{Z_i\}_{i=1}^k \stackrel{\text{i.i.d.}}{\sim} \text{Uni}[0,1]$, and define

$$H_F(W) \coloneqq \mathbb{E}\left[\prod_{\{i,j\}\in E} W(Z_i, Z_j)\right], \quad \text{for } W \in \widehat{\mathcal{W}}.$$



Scaling limit of Noisy SGD & Graphon McKean-Vlasov eqns.

For every $n \in \mathbb{N}$, start at $W_0^{(n)} \in \mathcal{M}_n$. Take step towards negative of the stochastic gradient. Add scaled variance bounded noise. Project every coordinate on [-1, 1]. Define

$$W_{k+1}^{(n)} = P\Big(W_k^{(n)} - \tau_n \cdot n^2 g_{n,k+1} + \tau_n^{1/2} \cdot G_{n,k}\Big), \qquad k \in \mathbb{Z}_+, \quad (\text{PNSGD})$$

 $\mathbb{E}\left[g_{n,k+1} \mid W_{k}^{(n)}\right] = \nabla R_{n}(W_{n,k}),$ $\mathbb{E}\left[\frac{1}{n^{2}} \left\|n^{2}g_{n,k+1} - n^{2}\nabla R_{n}\left(W_{k}^{(n)}\right)\right\|_{\mathrm{F}}^{2} \left\|W_{k}^{(n)}\right\| \leq \sigma^{2} < \infty,$ $\mathbb{E}[G_{n,k}] = 0, \text{ and } \mathbb{E}[G_{n,k}(i,j)^{2}] < M^{2} < \infty \ \forall \ (i,j) \in [n]^{(2)}.$

Convergence of Noisy Stochastic Gradient Descents [2]

Let the Fréchet-like derivative be uniformly bounded, i.e., $\|DR(W)\|_{\infty} < \|DR(W)\|_{\infty}$ $M < \infty, \forall W \in \widehat{\mathcal{W}}$. If $W_0^{(n)} \xrightarrow{\delta_2} W_0$, and $\tau_n \to 0$, then as $W^{(n)} \stackrel{o_{\Box}}{\rightrightarrows} \Gamma$, a.s. as $n \to \infty$. curves.

- Given a probability space with Brownian Motion $B, \& (U, V) \stackrel{\text{i.i.d.}}{\sim} \text{Uni}[0, 1].$
- $(X(t), \Gamma(t))$ solves the McKean-Vlasov type SDE. On $\{U = u, V = v\}$, $dX(t) = -DR(\Gamma(t))(u, v) dt + dB(t) + dL^{-}(t) - dL^{+}(t) ,$

constrains the process in
$$[-1,+1]$$

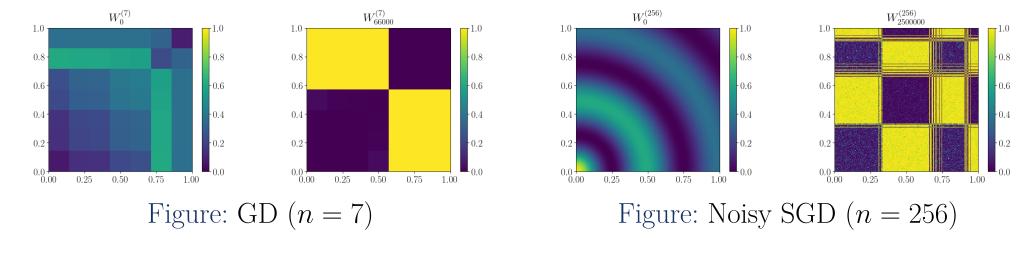
- where $\Gamma(t)(x, y) = \mathbb{E}[X(t) \mid (U, V) = (x, y)], \quad \forall (x, y) \in [0, 1]^2.$ • Mean-field interaction: For any edge-weight, the effect of all others
- edge-weights on its evolution is invariant under vertex relabeling.
- Γ is deterministic and absolutely continuous, but is not the gradient flow of R on graphons.

Simulations

Turán's theorem (extremal graph theory): The *n*-vertex triangle-free graph with the maximum number of edges is a complete bipartite graph.

Q. Can we recover this theorem through an optimization problem on graphons?

A. Say we minimize $H_{\triangle} - H_{-}$ (triangle density minus edge density).



• Both the approximate minimizers represent the balanced bipartite graph!

References

[1] Lénaïc Chizat and Francis Bach. On the global convergence of gradient descent for over-parameterized models using optimal transport. In Proceedings of the 32nd International Conference on Neural Information Processing Systems, NIPS'18, page 3040–3050, Red Hook, NY, USA, 2018. Curran Associates Inc.

[2] Zaid Harchaoui, Sewoong Oh, Soumik Pal, Raghav Somani, and Raghavendra Tripathi. Stochastic optimization on matrices and a graphon McKean-Vlasov limit.

arXiv preprint arXiv:2210.00422, 2022.

- [3] Sewoong Oh, Soumik Pal, Raghav Somani, and Raghav Tripathi. Gradient flows on graphons: existence, convergence, continuity equations. arXiv preprint arXiv:2111.09459, 2021.
- [4] Mei Song, Andrea Montanari, and P Nguyen. A mean field view of the landscape of two-layers neural networks. Proceedings of the National Academy of Sciences, 115:E7665-E7671. 2018.

