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Motivation

• Study large scale optimization problems over unlabeled graphs.
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Figure: Symmetry in unlabeled graphs.

• Minimize Risk function over weights of the Neural Network (NN).
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Figure: A feedforward NN as a computational graph.

• Do symmetries help our understanding and analysis?
Unlabeled graphs, and NNs have permutation symmetries.

• Stochastic Gradient Descent (SGD) behave as network grows?
Does noise play any role?

Objective

Understand the scaling limits of the standard first-order stochastic optimiza-
tion algorithms over functions of large dense unlabeled weighted graphs,
which are invariant under vertex relabeling.

For 1-hidden layer NNs (evolving neurons = interacting particle)
• System of interacting particles (neurons in a 1-hidden layer NN) have single

permutation symmetry.
• Scaling limit - “Mean-field limits” [4], “Wasserstein gradient flow” [1].

For multi-layer NNs (evolving weights = interacting weighted edges)
• We attempt to generalize the Wasserstein calculus to higher-order

exchangeable structures.

Graphons Ŵ

• Space of graphons capture this symmetry. Adjacency matrix ≡ kernel.
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Kernel representation of A

• Kernels, W : Measurable symmetric function W : [0, 1](2) → [−1, 1].
• Graph isomorphism: Identify W1

∼= W2 if one can be obtained by
‘relabeling’ the vertices of the other.

• Graphons: Ŵ := W/∼=.

Topology, metric & differentiable structure over graphons

• Cut Topology: Plays a similar topological role as the topology of weak
convergence does on probability measures. It captures graph convergence, is
compact and metrizable by δ□.

• Invariant L2 metric, δ2: Sometimes referred to as the
“Gromov-Wasserstein” metric. Plays a similar role as the Wasserstein-2
metric does on probability measures. It is a geodesic metric [3].

• Fréchet-like derivative [3]: For R : Ŵ → R, the Fréchet-like derivative
DR(W ) of R is the first order linear approximation of R at
W ∈ W ⊆ L2([0, 1]2).

Any n×n symmetric matrix A naturally corresponds to a kernel and hence can
be naturally associated with a graphon. Thus, any function R : Ŵ → R defines
a map on bounded n × n symmetric matrices Mn, denoted by Rn. Spatial
scaling leads to the relation: n2∇Rn ≡ DR.

Scaling limit of SGD

Existence of a gradient flow on graphons [3]

Let R : Ŵ → R be δ□-continuous, Fréchet differentiable, and geodesically
semiconvex. Then staring from W0 ∈ Ŵ , there exists a unique gradient
flow curve (Wt)t≥0 of R satisfying

Wt = W0 −
∫ t

0
DR(Ws) ds, t ≥ 0,

inside Ŵ . At the boundary {−1, 1}, add constraints to contain it.

• For every n ∈ N, start at W
(n)
0 ∈ Mn, take steps towards the negative of

the scaled Euclidean gradient n2∇Rn, to obtain

W
(n)
k+1 = P

(
W

(n)
k − τnn2∇Rn

(
W

(n)
k

))
, k ∈ Z+. (PGD)

Convergence of Gradient Descents [3]

Let the Fréchet-like derivative be uniformly bounded, i.e., ∥DR(W )∥∞ <

M < ∞, ∀ W ∈ Ŵ . If W
(n)
0

δ□−→ W0, and τn → 0, then as

curves, W (n)
δ□
⇒ W, as n → ∞.

• Stochastic approximation algorithms like SGD also converges to the same
gradient flow on graphons.

• The stochastic noise smoothens out due to the regularity of the cut topology.

Examples of functions

1 Scalar Entropy function: Let h : p 7→ p log p + (1 − p) log(1 − p), and
ϵ > 0. Sample {Zi}2

i=1
i.i.d.∼ Uni[0, 1], and define

E(W ) := E[h(W (Z1, Z2))] , for ϵ ≤ W ≤ 1 − ϵ.

2 Homomorphism functions: Let F = (V, E) be a simple graph with k

vertices. Sample {Zi}k
i=1

i.i.d.∼ Uni[0, 1], and define

HF (W ) := E

 ∏
{i,j}∈E

W (Zi, Zj)

 , for W ∈ Ŵ .

Scaling limit of Noisy SGD & Graphon McKean-Vlasov eqns.

For every n ∈ N, start at W
(n)
0 ∈ Mn. Take step towards negative of the

stochastic gradient. Add scaled variance bounded noise. Project every coordi-
nate on [−1, 1]. Define

W
(n)
k+1 = P

(
W

(n)
k − τn · n2gn,k+1 + τ 1/2

n · Gn,k

)
, k ∈ Z+, (PNSGD)

where
E
[
gn,k+1

∣∣∣ W
(n)
k

]
= ∇Rn(Wn,k),

E
[

1
n2

∥∥∥n2gn,k+1 − n2∇Rn

(
W

(n)
k

)∥∥∥2

F

∣∣∣∣ W
(n)
k

]
≤ σ2 < ∞,

E[Gn,k] = 0, and E[Gn,k(i, j)2] < M 2 < ∞ ∀ (i, j) ∈ [n](2).

Convergence of Noisy Stochastic Gradient Descents [2]

Let the Fréchet-like derivative be uniformly bounded, i.e., ∥DR(W )∥∞ <

M < ∞, ∀ W ∈ Ŵ . If W
(n)
0

δ2−→ W0, and τn → 0, then as

curves, W (n)
δ□
⇒ Γ, a.s. as n → ∞.

• Given a probability space with Brownian Motion B, & (U, V ) i.i.d.∼ Uni[0, 1].
• (X(t), Γ(t)) solves the McKean-Vlasov type SDE. On {U = u, V = v},

dX(t) = −DR(Γ(t))(u, v) dt + dB(t) + dL−(t) − dL+(t)︸ ︷︷ ︸
constrains the process in [−1,+1]

,

where Γ(t)(x, y) = E[X(t) | (U, V ) = (x, y)], ∀ (x, y) ∈ [0, 1]2.
• Mean-field interaction: For any edge-weight, the effect of all others

edge-weights on its evolution is invariant under vertex relabeling.
• Γ is deterministic and absolutely continuous, but is not the gradient flow of

R on graphons.

Simulations

Turán’s theorem (extremal graph theory): The n-vertex triangle-free graph
with the maximum number of edges is a complete bipartite graph.

Q. Can we recover this theorem through an optimization problem on graphons?
A. Say we minimize H△ − H− (triangle density minus edge density).

Figure: GD (n = 7) Figure: Noisy SGD (n = 256)

• Both the approximate minimizers represent the balanced bipartite graph!
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