Scaling limits of SGD over large networks: a Graphon perspective
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Motivation

e Study large scale optimization problems over unlabeled graphs.

Figure: Symmetry in unlabeled graphs.

e Minimize Risk function over weights of the Neural Network (NN).

X1 Lit1

Zo
Tp

'> — 4(wo)

0/

dp

dq dit1
Figure: A feedforward NN as a computational graph.

e Do symmetries help our understanding and analysis?
Unlabeled graphs, and NNs have permutation symmetries.

e Stochastic Gradient Descent (SGD) behave as network grows?
Does noise play any role?

Objective

Understand the scaling limits of the standard first-order stochastic optimiza-

tion algorithms over functions of large dense unlabeled weighted graphs,

which are invariant under vertex relabeling.

For 1-hidden layer NNs (evolving neurons = interacting particle)

e System of interacting particles (neurons in a 1-hidden layer NN) have single

permutation symmetry.

e Scaling limit - “Mean-field limits” [4], “Wasserstein gradient flow” [1].

For multi-layer NNs (evolving weights = interacting weighted edges)

e We attempt to generalize the Wasserstein calculus to higher-order
exchangeable structures.

Graphons W

e Space of graphons capture this symmetry. Adjacency matrix = kernel.
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Kernel representation of A

Symmetric matrix A

e Kernels, W: Measurable symmetric function W : |0, 1]<2) — [—1,1].

e Graph isomorphism: Identifty W7 = W, if one can be obtained by

‘relabeling’ the vertices of the other.

o Graphons: W = W/,
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Topology, metric & differentiable structure over graphons

e Cut Topology: Plays a similar topological role as the topology of weak
convergence does on probability measures. It captures graph convergence, is
compact and metrizable by op.

o Invariant L’ metric, d;: Sometimes referred to as the
“Gromov-Wasserstein” metric. Plays a similar role as the Wasserstein-2
metric does on probability measures. It is a geodesic metric [3].

* Fréchet-like derivative [3|: For R: W — R, the Fréchet-like derivative
DR(W) of R is the first order linear approzimation of R at
W ew C L4[0,1]%).

Any n x n symmetric matrix A naturally corresponds to a kernel and hence can
be naturally associated with a graphon. Thus, any function R: VW — R defines
a map on bounded n X n symmetric matrices M,,, denoted by R,. Spatial

scaling leads to the relation: n°VR,, = DR.

Scaling limit of SGD

Existence of a gradient flow on graphons [3]

Let R: W — R be or-continuous, Fréchet differentiable, and geodesically
semiconvex. Then staring from W, € W, there exists a unique gradient

flow curve (W}),5, of R satisfying

t
Wt:WO—/ DR(W,)ds, t>0,
0

inside W. At the boundary {—1,1}, add constraints to contain it.

e For every n € N, start at Wom) e M,, take steps towards the negative of

the scaled Euclidean gradient n’V R,,, to obtain

Wi = P(W" — nn?VR,(W")), ke (PGD)

Convergence of Gradient Descents [3]

Let the Fréchet-like derivative be uniformly bounded, i.e., |[DR(W)| <
M<oo, VWeW. If W™

00
W = W,

then as

o
— Wy, and 7, — 0,

Curves, as n — o0,

e Stochastic approximation algorithms like SGD also converges to the same

eradient flow on graphons.

e The stochastic noise smoothens out due to the regularity of the cut topology.

Examples of functions

o Scalar Entropy function: Let h: p — plogp + (1 — p)log(1 — p), and
e > 0. Sample {Z;}7_, K ~" Uni|0, 1], and define

EW) =EhW(Zy,25))], fore<W<1-—e.
o Homomorphism functions: Let F' = (V, F) be a simple graph with k

vertices. Sample {Z;}7 111d Uni|0, 1], and define
He(W)=E| [[ W(z.,2;)|, forWew.
{i,JEE 1

Scaling limit of Noisy SGD & Graphon McKean-Vlasov eqns.

For every n € N, start at Wo(n) e M,. Take step towards negative of the
stochastic gradient. Add scaled variance bounded noise. Project every coordi-

nate on |—1, 1]. Define
Wi = P(W = 7 ngupr + 7% Goi),  k€Zy,  (PNSGD)
where
E|guit | W] = VRA(Wi)
E | &||n2ga ka1 — 0V R, (W, )H ] < o’ < o0,

E[ank] — O, and E[Gmk( ] < M2 < ooV (Z ]) [ ](2).

Convergence of Noisy Stochastic Gradient Descents [2]

Let the Fréchet-like derivative be uniformly bounded, i.e., |[DR(W)| <

)
= Wy, and 7, — 0, then as

M<oo, VWeW. It WM
)
W) :Di I, a.s.

Curves, as n — o0,

e Given a probability space with Brownian Motion B, & (U, V) B Unil0, 1].
o (X (t),['(t)) solves the McKean-Vlasov type SDE. On {U = u,V = v},

dX(t) = —DR(I(1))(u,v)dt + dB(t) +dL~(t) — dL*(t) |
constrains the Iz“gcess in [—1,+1]

where  T'(¢)(z,y) = E[X(¢) | (U, V) = (z,y)], V(z,y) €
e Mean-field interaction: For any edge-weight, the effect of all others

0, 1]".

cdge-weights on its evolution is invariant under vertex relabeling.

e [' is deterministic and absolutely continuous, but is not the gradient flow of
R on graphons.

Simulations

Turan’s theorem (extremal graph theory): The n-vertex triangle-free graph
with the maximum number of edges is a complete bipartite graph.

(). Can we recover this theorem through an optimization problem on graphons?
A

. Say we minimize Hx — H_ (triangle density minus edge density).
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Figure: GD (n = 17)
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Figure: Noisy SGD (n = 256)

e Both the approximate minimizers represent the balanced bipartite graph!
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